Probability of Independent and Dependent Events

CCM2 Unit 6: Probability

Independent and Dependent Events

- Independent Events: two events are said to be independent when one event has no affect on the probability of the other event occurring.
- Dependent Events: two events are dependent if the outcome or probability of the first event affects the outcome or probability of the second.

Independent Events

Suppose a die is rolled and then a coin is tossed.

- Explain why these events are independent.
- They are independent because the outcome of rolling a die does not affect the outcome of tossing a coin, and vice versa.
- We can construct a table to describe the sample space and probabilities:

	Roll 1	Roll 2	Roll 3	Roll 4	Roll 5	Roll 6
Head						
Tail						

	Roll 1	Roll 2	Roll 3	Roll 4	Roll 5	Roll 6
Head	$1, \mathrm{H}$	$2, \mathrm{H}$	$3, \mathrm{H}$	$4, \mathrm{H}$	$5, \mathrm{H}$	$6, \mathrm{H}$
Tail	$1, \mathrm{~T}$	$2, \mathrm{~T}$	$3, \mathrm{~T}$	$4, \mathrm{~T}$	$5, \mathrm{~T}$	$6, \mathrm{~T}$

- How many outcomes are there for rolling the die?
- 6 outcomes
- How many outcomes are there for tossing the coin?
- 2 outcomes
- How many outcomes are there in the sample space of rolling the die and tossing the coin?
- 12 outcomes

	Roll 1	Roll 2	Roll 3	Roll 4	Roll 5	Roll 6
Head	$1, \mathrm{H}$	$2, \mathrm{H}$	$3, \mathrm{H}$	$4, \mathrm{H}$	$5, \mathrm{H}$	$6, \mathrm{H}$
Tail	$1, \mathrm{~T}$	$2, \mathrm{~T}$	$3, \mathrm{~T}$	$4, \mathrm{~T}$	$5, \mathrm{~T}$	$6, \mathrm{~T}$

- Is there another way to decide how many outcomes are in the sample space?
- Multiply the number of outcomes in each event together to get the total number of outcomes.
- Let's see if this works for another situation.

A fast food restaurant offers 5 sandwiches and 3 sides. How many different meals of a sandwich and side can you order?

- If our theory holds true, how could we find the number of outcomes in the sample space?
- 5 sandwiches $\times 3$ sides $=15$ meals
- Make a table to see if this is correct.

	Sand. 1	Sand. 2	Sand. 3	Sand. 4	Sand. 5
Side 1					
Side 2					
Side 3					

- Were we correct?

Probabilities of Independent Events

The probability of independent events is the probability of both occurring, denoted by $P(A$ and $B)$ or $P(A \cap B)$.

	Roll 1	Roll 2	Roll 3	Roll 4	Roll 5	Roll 6
Head	$1, \mathrm{H}$	$2, \mathrm{H}$	$3, \mathrm{H}$	$4, \mathrm{H}$	$5, \mathrm{H}$	$6, \mathrm{H}$
Tail	$1, \mathrm{~T}$	$2, \mathrm{~T}$	$3, \mathrm{~T}$	$4, \mathrm{~T}$	$5, \mathrm{~T}$	$6, \mathrm{~T}$

Use the table to find the following probabilities:

1. P (rolling a 3)
$2 / 12=1 / 6$
2. P (Tails)
$6 / 12=1 / 2$
3. P (rolling a 3 AND getting tails) 1/12
4. P(rolling an even)

$$
6 / 12=1 / 2
$$

5. P (heads)
$6 / 12=1 / 2$
6. P (rolling an even AND getting heads) $3 / 12$ or $1 / 4$
What do you notice about the answers to 3 and 6?

Multiplication Rule of Probability

- The probability of two independent events occurring can be found by the following formula:

$$
P(A \cap B)=P(A) \times P(B)
$$

Examples

1. At City High School, 30% of students have parttime jobs and 25% of students are on the honor roll. What is the probability that a student chosen at random has a part-time job and is on the honor roll? Write your answer in context.
$\mathrm{P}(\mathrm{PT}$ job and honor roll $)=\mathrm{P}(\mathrm{PT}$ job $) \times \mathrm{P}($ honor roll $)=$ $.30 \times .25=.075$
There is a 7.5% probability that a student chosen at random will have a part-time job and be on the honor roll.
2. The following table represents data collected from a grade 12 class in DEF High School.

	Plans after High School		
Gender	University	Community College	Total
Males	28	56	84
Females	43	37	80
Total	71	93	164

Suppose 1 student was chosen at random from the grade 12 class.
(a) What is the probability that the student is female? 20/41 or 48.8%
(b) What is the probability that the student is going to university? $71 / 164$ or
Now suppose 2 people both randomly chose 1 student from the grade 12 class. Assume that it's possible for them to choose the same student.
(c) What is the probability that the first person chooses a student who is female and the second person chooses a student who is going to university? $355 / 1681$ or 21.1%
3. Suppose a card is chosen at random from a deck of cards, replaced, and then a second card is chosen.

- Would these events be independent? How do we know?
- Yes, because the first card is replaced before the second card is drawn.
- What is the probability that both cards are 7 s ?
- $P(7)=4 / 52$, so $P(7$ and 7$)=P(7) \times P(7)=4 / 52 \times 4 / 52=$ 1/169 or . 0059.
- This means that the probability of drawing a 7, replacing the card and then drawing another 7 is 0.59%

Dependent Events

- Remember, we said earlier that
- Dependent Events: two events are dependent if the outcome or probability of the first event affects the outcome or probability of the second.
- Let's look at some scenarios and determine whether the events are independent or dependent.

Determine whether the events are independent or dependent:

1. Selecting a marble from a container and selecting a jack from a deck of cards.

- Independent

2. Rolling a number less than 4 on a die and rolling a number that is even on a second die.

- Independent

3. Choosing a jack from a deck of cards and choosing another jack, without replacement.

- Dependent

4. Winning a hockey game and scoring a goal.

- Dependent

Probabilities of Dependent Events

- We cannot use the multiplication rule for finding probabilities of dependent events because the one event affects the probability of the other event occurring.
- Instead, we need to think about how the occurrence of one event will effect the sample space of the second event to determine the probability of the second event occurring.
- Then we can multiply the new probabilities.

Examples

1. Suppose a card is chosen at random from a deck, the card is NOT replaced, and then a second card is chosen from the same deck. What is the probability that both will be 7s?

- This is similar the earlier example, but these events are dependent? How do we know?
- How does the first event affect the sample space of the second event?

1. Suppose a card is chosen at random from a deck, the card is NOT replaced, and then a second card is chosen from the same deck. What is the probability that both will be 7s?

- Let's break down what is going on in this problem:
- We want the probability that the first card is a 7, or $\mathrm{P}\left(1^{\text {st }}\right.$ is 7$)$, and the probability that the second card is a 7 , or $\mathrm{P}\left(2^{\text {nd }}\right.$ is 7).
- $P\left(1^{\text {st }}\right.$ is 7$)=4 / 52$ because there a four $7 s$ and 52 cards
- How is $P\left(2^{\text {nd }}\right.$ is 7$)$ changed by the first card being a 7 ?
- $P\left(2^{\text {nd }}\right.$ is 7$)=3 / 51$
- $P\left(1^{\text {st }}\right.$ is $7,2^{\text {nd }}$ is 7$)=4 / 52 \times 3 / 51=1 / 221$ or .0045
- The probability of drawing two sevens without replacement is 0.45\%

2. A box contains 5 red marbles and 5 purple marbles. What is the probability of drawing 2 purple marbles and 1 red marble in succession without replacement?

- $\quad P\left(1^{\text {st }}\right.$ purple $)=5 / 10$
- $P\left(2^{\text {nd }}\right.$ purple $)=4 / 9$
- $P\left(3^{\text {rd }}\right.$ red $)=5 / 8$
- $P($ purple,purple,red $)=5 / 10 \times 4 / 9 \times 5 / 8=5 / 36$ or .139
- The probability of drawing a purple, a purple, then a red without replacement is 13.9%

3. In Example 2, what is the probability of first drawing all 5 red marbles in succession and then drawing all 5 purple marbles in succession without replacement?

- $\mathrm{P}(5$ red then 5 purple) $=$ $(5 / 10)(4 / 9)(3 / 8)(2 / 7)(1 / 6)(5 / 5)(4 / 4)(3 / 3)(2 / 2)(1 / 1)=$ $1 / 252$ or .004
- The probability of drawing 5 red then 5 purple without replacement is 0.4%
- Explain why the last 5 probabilities above were all equivalent to 1.
- This is because there were only purple marbles left, so the probability for drawing a purple marble was 1.

