Sample Spaces, Subsets and Basic Probability

CCM2 Unit 6: Probability

Sample Space

- Sample Space: The set of all possible outcomes of an experiment.
- List the sample space, S, for each of the following:
a. Tossing a coin
- $\mathrm{S}=\{\mathrm{H}, \mathrm{T}\}$
b. Rolling a six-sided die
- $S=\{1,2,3,4,5,6\}$
c. Drawing a marble from a bag that contains two red, three blue and one white marble
- $\mathrm{S}=\{$ red, red, blue, blue, blue, white $\}$

Intersections and Unions of Sets

- The intersection of two sets $(\mathbf{A} \cap B)$ is the set of all elements in both set A AND set B.
- The union of two sets $(A \cup B)$ is the set of all elements in set A OR set B.
- Example: Given the following sets, find $A \cap B$ and $A \cup B$

$$
\begin{aligned}
& A=\{1,3,5,7,9,11,13,15\} \quad B=\{0,3,6,9,12,15\} \\
& A \cap B=\{3,9,15\} \\
& A \cup B=\{0,1,3,5,6,7,9,11,12,13,15\}
\end{aligned}
$$

Venn Diagrams

- Sometimes drawing a diagram helps in finding intersections and unions of sets.
- A Venn Diagram is a visual representation of sets and their relationships to each other using overlapping circles. Each circle represents a different set.

Different
D

Use the Venn Diagram to answer the

 questions below:

1. What are the elements of set A ?
\{1,2,3,4,6,12\}
2. What are the elements of set B ?
\{1,2,4,8,16\}
3. Why are 1,2 , and 4 in both sets?

4. What is $\mathrm{A} \cap \mathrm{B}$?
\{1,2,4\}
5. What is $A \cup B$?
$\{1,2,3,4,6,8,12,16\}$

In a class of 60 students, 21 sign up for chorus, 29 sign up for band, and 5 take both. 15 students in the class are not enrolled in either band or chorus.
6. Put this information into a Venn Diagram. If the sample space, S, is the set of all students in the class, let students in chorus be set A and students in band be set B.
7. What is $A \cup B$?
8. What is $A \cap B$?

$A \cup B=\{45\}$
$A \cap B=\{5\}$

Compliment of a set

- The complement of a set is the set of all elements NOT in the set.
- The compliment of a set, A , is denoted as A^{C}
- Ex:

$$
\begin{aligned}
& S=\{\ldots-3,-2,-1,0,1,2,3,4, \ldots\} \\
& A=\{\ldots-2,0,2,4, \ldots\}
\end{aligned}
$$

If A is a subset of S, what is A^{C} ?

$$
A^{C}=\{-3,-1,1,3,5, \ldots\}
$$

9. What is A^{C} ? B^{C} ?
\{39\}
\{31\}
10. What is $(A \cap B)^{C}$?
\{55\}
11. What is $(A \cup B)^{C}$?
\{15\}

Basic Probability

- Probability of an event occurring is:

$P(E)=$ Number of Favorable Outcomes

Total Number of Outcomes

- We can use sample spaces, intersections, unions, and compliments of sets to help us find probabilities of events.
$>$ Note that $\mathbf{P}\left(\mathbf{A}^{\mathrm{C}}\right)$ is every outcome except (or not) A, so we can find $P\left(A^{C}\right)$ by finding $1-P(A)$
$>$ Why do you think this works?

An experiment consists of tossing three coins.
12. List the sample space for the outcomes of the experiment. \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}
13. Find the following probabilities:
a. P(all heads)

1/8
b. $\quad \mathrm{P}$ (two tails)

3/8
c. P (no heads)

1/8
d. $\quad \mathrm{P}$ (at least one tail)

7/8
e. How could you use compliments to find d?

The compliment of at least one tail is no tails, so you could do $1-\mathrm{P}($ no tails $)=1-1 / 8=7 / 8$

A bag contains six red marbles, four blue marbles, two yellow marbles and 3 white marbles. One marble is drawn at random.
14. List the sample space for this experiment.
$\{r, r, r, r, r, r, b, b, b, b, y, y, w, w, w\}$
15. Find the following probabilities:
a. P (red)

2/5
b. P (blue or white)

7/15
c. P (not yellow)

13/15
(Note that we could either count all the outcomes that are not yellow or we could think of this as being $1-\mathrm{P}$ (yellow). Why is this?)

A card is drawn at random from a standard deck of cards. Find each of the following:
16. P(heart)
$13 / 52$ or $1 / 4$
17. P(black card)
$26 / 52$ or $1 / 2$
18. P(2 or jack)
$8 / 52$ or $2 / 13$
19. P (not a heart)
$39 / 52$ or $3 / 4$

Odds

- The odds of an event occurring are equal to the ratio of favorable outcomes to unfavorable outcomes.

Odds = Favorable Outcomes

Unfavorable Outcomes
20. The weather forecast for Saturday says there is a 75% chance of rain. What are the odds that it will rain on Saturday?

- What does the 75% in this problem mean?
- In 100 days where conditions were the same as Saturday, it rained on 75 of those days.
- The favorable outcome in this problem is that it rains:
- 75 favorable outcomes, 25 unfavorable outcomes
- $\operatorname{Odds}($ rain $)=75 / 25$ or $3 / 1$
- Should you make outdoor plans for Saturday?

21. What are the odds of drawing an ace at random from a standard deck of cards?
Odds(ace) $=4 / 48$
= 1/12
