Sample Spaces, Subsets and Basic Probability

CCM2 Unit 6: Probability

Sample Space

- Sample Space: The set of all possible outcomes of an experiment.
- List the sample space, S, for each of the following:
 - a. Tossing a coin
 - S = {H,T}
 - b. Rolling a six-sided die
 - S = {1,2,3,4,5,6}
 - c. Drawing a marble from a bag that contains two red, three blue and one white marble
 - S = {red, red, blue, blue, blue, white}

Intersections and Unions of Sets

- The intersection of two sets (A ∩ B) is the set of all elements in both set A AND set B.
- The union of two sets (A ∪ B) is the set of all elements in set A OR set B.
- Example: Given the following sets, find A \cap B and A \cup B

A = {1,3,5,7,9,11,13,15} B = {0,3,6,9,12,15}

 $A \cap B = \{3, 9, 15\}$

 $A \cup B = \{0, 1, 3, 5, 6, 7, 9, 11, 12, 13, 15\}$

Venn Diagrams

- Sometimes drawing a diagram helps in finding intersections and unions of sets.
- A Venn Diagram is a visual representation of sets and their relationships to each other using overlapping circles. Each circle represents a different set.

Use the Venn Diagram to answer the questions below:

- What are the elements of set A?
 {1,2,3,4,6,12}
- 2. What are the elements of set B?

{1,2,4,8,16}

3. Why are 1, 2, and 4 in both sets?

In a class of 60 students, 21 sign up for chorus, 29 sign up for band, and 5 take both. 15 students in the class are not enrolled in either band or chorus.

6. Put this information into a Venn Diagram. If the sample space, S, is the set of all students in the class, let students in chorus be set A and students in band be set B.

- 7. What is A \cup B?
- 8. What is $A \cap B$?

 $\mathsf{A} \cup \mathsf{B} = \{45\}$

 $\mathsf{A} \cap \mathsf{B} = \{\mathsf{5}\}$

Compliment of a set

• The **complement** of a set is the set of all elements **NOT** in the set.

- The compliment of a set, A, is denoted as A^C

• Ex:
$$S = \{\dots -3, -2, -1, 0, 1, 2, 3, 4, \dots\}$$

 $A = \{\dots -2, 0, 2, 4, \dots\}$

If A is a subset of S, what is A^C?

A^C = {-3,-1,1,3,5,...}

- 9. What is A^{C} ? B^{C} ? {39} {31} 10. What is $(A \cap B)^{C}$? {55} 11. What is $(A \cup B)^{C}$?
 - {15}

Basic Probability

Probability of an event occurring is:

P(E) = <u>Number of Favorable Outcomes</u> Total Number of Outcomes

- We can use sample spaces, intersections, unions, and compliments of sets to help us find probabilities of events.
 - Note that P(A^c) is every outcome except (or not) A, so we can find P(A^c) by finding 1 – P(A)

>Why do you think this works?

An experiment consists of tossing three coins.

- 12. List the sample space for the outcomes of the experiment. {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}
- 13. Find the following probabilities:
 - a. P(all heads) 1/8
 - b. P(two tails)3/8
 - c. P(no heads) 1/8
 - d. P(at least one tail) 7/8
 - e. How could you use compliments to find d? The compliment of at least one tail is no tails, so you could do 1 - P(no tails) = 1 - 1/8 = 7/8

A bag contains six red marbles, four blue marbles, two yellow marbles and 3 white marbles. One marble is drawn at random.

- 14. List the sample space for this experiment.
 - {r, r, r, r, r, r, b, b, b, b, y, y, w, w, w}
- 15. Find the following probabilities:
 - a. P(red)
 - 2/5
 - b. P(blue or white)
 - 7/15
 - c. P(not yellow)

13/15

(Note that we could either count all the outcomes that are not yellow or we could think of this as being 1 – P(yellow). Why is this?)

A card is drawn at random from a standard deck of cards. Find each of the following: 16.P(heart) 13/52 or ¼ 17. P(black card) 26/52 or ½ 18. P(2 or jack) 8/52 or 2/13 19. P(not a heart) 39/52 or 3/4

Odds

 The odds of an event occurring are equal to the ratio of favorable outcomes to unfavorable outcomes.

> Odds = <u>Favorable</u> Outcomes Unfavorable Outcomes

20. The weather forecast for Saturday says there is a 75% chance of rain. What are the odds that it will rain on Saturday?

- What does the 75% in this problem mean?
 - In 100 days where conditions were the same as Saturday, it rained on 75 of those days.
- The favorable outcome in this problem is that it rains:
 - 75 favorable outcomes, 25 unfavorable outcomes
 - Odds(rain) = 75/25 or 3/1
- Should you make outdoor plans for Saturday?

21. What are the odds of drawing an ace at random from a standard deck of cards?
Odds(ace) = 4/48
= 1/12