Antroduction to Similarity Unit IB Day I

Basics of Geometrys

Pre-Lesson

Segment

Definition:Part of a line that consists of two points called the endpoints and all points between them.

How to sketch:

How to name: $\overline{\mathrm{AB}}$ or $\overline{\mathrm{BA}}$
The symbol $\overline{\mathrm{AB}}$ is read as "segment AB ".
$\boldsymbol{A B}$ (without a symbol) means the length of the segment or the distance between points \boldsymbol{A} and \boldsymbol{B}.

Congruent Segments

finition: Segments with equal lengths. (congruent symbol: \cong) ngruent segments can be marked with dashes.

1 numbers are equal the objects are congruent.

$\overline{A B}$: the segment $A B$ (an object)
$A B$: the distance from A to B (a number)

Correct notation: $\quad \mathrm{AB}=\mathrm{CD}$
 $\overline{\mathrm{AB}} \cong \overline{\mathrm{CD}}$
 Incorrect notation:

Ray

finition: $\overrightarrow{\mathbf{R A}}: \overline{\mathbf{R A}}$ and all points Y such that A is between R and Y.

w to sketch:
w to name:

$\overrightarrow{R A}($ not $\overrightarrow{A R})$
$\overrightarrow{\mathrm{RA}}$ or $\overrightarrow{\mathrm{RY}}($ not $\overrightarrow{\mathrm{RAY}})$
(the symbol $\overrightarrow{R A}$ is read as "ray RA")

Angle and Points

Angle is a figure formed by two rays with a common endpoint fled the vertex.

vertex

Agles can have points in the interior, in the exterior or on the angle.

Points A, B and C are on the angle. D is in the interior and E is in the exterior. B is the vertex.

Naming an angle: (1) Using 3 points

 (2) Using 1 point
(3) Using a number - next slide

Using points:

1 point: 2 se this method is permitted when the vertex point is the vertex of one and only one

Since B is the vertex of only this angle, this can also be called

$$
\angle B
$$

vertex must be the middle letter
This angle can be named as

$$
\angle A B C \text { or } \angle C B A
$$

Naming an Angle - continued

g a number:

A number (without a degree symbol) may be used as the labe or name of the angle. This number is placed in the interior of the angle near its vertex. The angle to the left can be named as

the "1 letter" name is unacceptable when ...

mone than one angle has the same vertex point. In this case, use the three letter name or a number if it is present.

Congruent Angles

Col ${ }^{\text {hgruent }}$ angles are marked with the same number of "arcs".

The symbol for congruence is \cong

$$
\angle 3 \cong \angle 5 .
$$

Vertical Angles

Definition: A pair of angles whose sides form opposite ray

Examples:
$\angle 1$ and $\angle 3$
$\angle 2$ and $\angle 4$

ertical angles are non-adjacent angles formed by intersectin lines.

Theorem: Vertical Angles are

Given:

The diagram

Prove: $\quad \angle 1 \cong \angle 3$

Statements

1. $\mathrm{m} \angle 1+\mathrm{m} \angle 2=180^{\circ}$
$\mathrm{m} \angle 2+\mathrm{m} \angle 3=180^{\circ}$
2. $\mathrm{m} \angle 1+\mathrm{m} \angle 2=\mathrm{m} \angle 2+\mathrm{m} \angle 3$
3. $\mathrm{m} \angle 1=\mathrm{m} \angle 3$
4. $\mathrm{m} \angle 1 \cong \mathrm{~m} \angle 3$

Reasons

1. Definition: Linear Pair
2. Property: Substitution
3. Property: Subtraction
4. Definition: Congruence

Supplementary Angles

Definition: A pair of angles whose sum is 180°
Examples:
djacent supplementary angles are so called "Linear Pair."

on-Adjacent Angles

$$
\begin{aligned}
& \mathrm{m} \angle 1=40^{\circ} \\
& \mathrm{m} \angle 2=140^{\circ}
\end{aligned}
$$

Similar Figures

- Similar Figures are figures that have been transformed using at least one non-rigid transformation (dilation).
- Similar figures have the following properties:
- All angles are congruent
- All sides of the figure are proportional to the sides of the similar figure
- The ratio of the sides of the two similar figures is determined by the scale factor

