Triangle Congruence

Define congruent.... Triangle ABC is congruent to Triangle FED. Name 6 congruent parts...

IN ORDER FOR TWO TRIANGLES TO BE CONGRUENT ALL CORRESPONDING ANGLES AND SIDES MUST BE CONGRUENT!

Congruency Statement

ΔABC≅ΔDEF

Based on the congruency statement, which angles and which sides must be congruent?

Complete the congruency statement for the following triangles...

ΔPQR≅Δ

Corresponding Parts

Name the corresponding congruent parts for these triangles.

 $\triangle ABC \cong \triangle DEF$

Do you need all six?

Side-Side-Side (SSS)

If three sides of one triangle are congruent to three corresponding sides of a second triangle, then the triangles are congruent.

COMERCIAL BREAK!!

http://www.youtube.com/watch?v=o009kN8bCC8

Included Angle

The angle between two sides

Included Angle

The included angle is the angle with the letter that both sides share

Name the included angle:

 \overline{YE} and \overline{ES} $\angle E$

ES and YS \angle S

YS and YE \angle Y

Side-Angle-Side (SAS)

If two sides of one triangle and the included angle are congruent the two corresponding sides and included angle, then the triangles are congruent.

- 1. AB ≅ DE
- 2. $\angle A \cong \angle D$ $\triangle ABC \cong \triangle DEF$
- 3. $\overline{AC} \cong \overline{DF}$

included angle

COMERCIAL BREAK!!

http://www.youtube.com/watch?v=4GZtALwvRaE&feature=grec_index

Included Side

The side between two angles

Included Side

Name the included angle:

 \angle Y and \angle E YE

 $\angle E$ and $\angle S$ \overline{ES}

 \angle S and \angle Y \overline{SY}

Angle-Side-Angle (ASA)

If two angles of a triangle and the included side are congruent the corresponding angles and included side, then the triangles are congruent.

- 1. $\angle A \cong \angle D$
- 2. $\overrightarrow{AB} \cong \overrightarrow{DE} \longrightarrow \triangle ABC \cong \triangle DEF$
- 3. $\angle B \cong \angle E$

included side

Angle-Angle-Side (AAS)

If two angles of a triangle and the non-included side are congruent the corresponding angles and non-included side, then the triangles are congruent

- 1. $\angle A \cong \angle D$
- 2. $\angle B \cong \angle E \longrightarrow \triangle ABC \cong \triangle DEF$
- 3. BC ≃ EF ° ○

Non-included side

Side Names of Triangles

 Right Triangles: side across from right angle is the hypotenuse, the remaining two are legs.

Examples: Tell whether the segment is a leg or a hypotenuse.

- FE
- ED
- FD

Hypotenuse-Leg (HL) Congruence Theorem:

- If the hypotenuse and a leg of a right triangle are congruent to the hypotenuse and leg of a second right triangle, then the two triangles are congruent.
- Example: because of HL.

Examples: Determine if the triangles are congruent. State the postulate or theorem.

7.

8.

17.

12.

There are 5 ways to prove triangles are congruent...

- Each of these ways have <u>3</u> things to look for!
 - ASA
 - SAS
 - 555
 - AAS
 - HL (Right Triangle)

Warning: No ASS or SSA Postulate NO CURSING IN MATH CLASS

There is no such thing as an SSA postulate!

NOT CONGRUENT

Warning: No AAA Postulate

There is no such thing as an AAA postulate!

NOT CONGRUENT

The Congruence Postulates

- SSS correspondence
- ASA correspondence
- SAS correspondence
- AAS correspondence
- HL correspondence

COMERCIAL BREAK!!

http://www.youtube.com/watch?v=hQYfCWak-Q0

Name That Postulate (when possible)

Name That Postulate (when possible)

Name That Postulate

(when possible)

You try! Name That Postulate (when possible)

Let's Practice

Indicate the additional information needed to enable us to apply the specified congruence postulate.

For ASA: $\angle B \cong \angle D$

For SAS: $\overline{AC} \cong \overline{FE}$

For AAS: $\angle A \cong \angle F$

You Try!

Indicate the additional information needed to enable us to apply the specified congruence postulate.

For ASA:

For SAS:

For AAS:

