Name: _____

1. The graph of f(x) is shown here:

- If $f(x) = ax^2 + bx + c$, what is f(x) in factored form?
- A. f(x) = (x 5)(x + 3)

B.
$$f(x) = -(x+5)(x-3)$$

C.
$$f(x) = -(x-5)(x+3)$$

D.
$$f(x) = (x+5)(x-3)$$

2. Which of these is a reasonable equation for the graph?

A.	$f(x) = \frac{1}{3}x$	B. $f(x) = \frac{1}{3}x^2$
C.	$f(x) = 3x^2 + 5$	D. $f(x) = 3x + 5$

3. Which of these is a reasonable equation for the graph?

Date: _____

4. Which of these could be the equation of the graph?

A.	$y = -2(x-3)^2 + 7$:	:		:	:	$\stackrel{y}{:}$:	1	Ŷ			:
B.	$y = -2(x+3)^2 + 7$	• • • •	:			:	•		ŀ	:			:
C.	$y = -2(x+3)^2 - 7$	•••••	:			•	• • • •		:	:::::::::::::::::::::::::::::::::::::::	•		$\stackrel{x}{\vdots}$
D.	$y = -2(x-3)^2 - 7$:	:	::		:	:	:	:	:	::	1	:

- 5. What is the equation of the graph below?
 - A. $y = 2(x + 4)^2 2$ B. $y = \frac{1}{2}(x + 4)^2 - 2$ C. $y = 2(x - 4)^2 - 2$ D. $y = 2(x + 4)^2 + 4$

6. What is the equation of the given parabola?

7. What is the equation of the given parabola?

8. Which equation corresponds to the values in this table?

x	у
-3	5
-2	0
-1	-3
0	-4
1	-3

- A. y = 4 xB. $y = 4 - x^2$ C. $y = x^2 - 4$ D. y = -2x - 1
- 9. When the equation $y = 2(x 4)^2 + 5$ is re-written in standard form, $y = ax^2 + bx + c$, what is the value of b?

A. -16 B. 0 C. -8 D. 16

- 10. By graphing the quadratic function $f(x) = 8 + 2x x^2$, find the *x* and *y*-intercepts.
 - A. x: -4, 2; y: 8 B. x: -2, 4; y: 8 C. x: 8; y: -4, 2 D. x: -1, 2; y: 8
- 11. Determine all the zeros of the function $y = 3x^2 2x 2$.
 - A. $\frac{1\pm\sqrt{7}}{3}$ B. $\frac{-1\pm\sqrt{3}}{3}$
 - C. $\frac{1\pm\sqrt{5}}{3}$ D. no real zeros exist
- 12. Which of the following are the zeros of the function $f(x) = 5x^2 13x 6$?
 - A. x = -3, $\frac{2}{5}$ B. x = 3, $\frac{5}{2}$ C. x = 3, $-\frac{2}{5}$ D. no real zeros exist
- 13. Graph $y = x^2 + 6x 4$. For what *approximate* values of x is y = 0?
 - A. -6 and 0 B. -6.6 and 0.6
 - C. 0.7 and 2.1 D. 0.7 and 4.2
- 14. What is the equation of a quadratic function that has zeros -3 and 6?

A. $f(x) = x^2 + 9x + 18$ B. $f(x) = x^2 - 9x - 18$ C. $f(x) = x^2 + 3x + 18$ D. $f(x) = x^2 - 3x - 18$

- 15. If the roots of the quadratic equation $Ax^2 + Bx + C = 0$ are x = -3 and x = 7, then what is the equation?
 - A. $x^{2} + 4x 21 = 0$ B. $x^{2} - 4x + 21 = 0$ C. $x^{2} + 4x + 21 = 0$ D. $x^{2} - 4x - 21 = 0$
- 16. Determine the vertex of the parabola $x = -2y^2 + 12y 10.$
 - A. (8,3) B. (19,9)
 - C. (28,3) D. (28,9)
- 17. An equation of the axis of symmetry of the graph of the equation $y = 2x^2 + 6x 5$ is:
 - A. $x = -\frac{3}{2}$ B. x = -3C. $y = -\frac{3}{2}$ D. y = -3
- 18. Simplify: $(k^{n+2})^3$
 - A. k^{n+5} B. k^{n+6} C. k^{3n+6} D. k^{6n+6}
- 19. Simplify: $gh^3(g^{2m} 3g^m h^{2m} h^{3m})$
 - A. $g^{2m}h^3 3g^mh^{6m} gh^{9m}$
 - B. $g^{3m}h^3 3g^{2m}h^{5m} gh^{6m}$
 - C. $g^{2m}h^{6m} 3g^mh^{6m} gh^{9m}$
 - D. $g^{2m+1}h^3 3g^{m+1}h^{2m+3} gh^{3m+3}$

- 20. $\frac{x^a}{x^b}$ is equivalent to which expression?
 - A. x^{a-b} B. x^{ab} C. $x^{\frac{a}{b}}$ D. x^{b-a}
- 21. Simplify: $(j^a k^{7b})^2$ A. $j^{2a} - 2j^a k^{7b} + k^{49b}$ B. $j^{2a} - 2j^a k^{7b} + k^{14b}$ C. $j^{2a} + k^{14b}$ D. $j^{2a} + k^{49b}$
- 22. Use this key to answer the following question(s).

The modeled form of $x^2 + 4x + 4$ is shown here:

What are the factors?

- A. (x-2)(x+2) B. $(x-2)^2$
- C. $(x+2)^2$ D. $(x^2+2x)^2$
- 23. When factored correctly, $x^2 25 =$ ____.
 - A. $(x-5)^2$ B. $(x+5)^2$ C. $(x+5)^{-2}$ D. (x-5)(x+5)

24. Factor: $r^2 - 36$

A.	(r+6)(r-6)	В.	(r+2)(r-18)
C.	(r-18)(r-2)	D.	$(r-6)^2$

- 25. Factor: $12y^2 + 3y 9$
 - A. 3(4y-3)(y+1)B. (4y-3)(3y+3)C. (6y-9)(y+1)D. (6y+9)(y-1)
- 26. Find one factor of: $2x^2 5x 12$
 - A. (x + 4)B. (x - 3)C. (x - 4)D. (x + 3)
- 27. Factor completely: $12x^2 + 5xy 28y^2$. Then, identify one of the following as an incomplete version of the correctly factored form.
 - A. ()(3x+) B. (4x+)() C. (-7y)() D. ()(-14y)
- 28. Solve: d(6d 18) = 0
 - A. 0 or 3
 B. 6 or −3

 C. d or 3
 D. d or −6 or 3
- 29. Solve: $3x^2 + 2x + 3 = 4$
 - A. 4, 3 B. $-\frac{1}{3}$, 1 C. -1, $\frac{1}{3}$ D. -1, -3

30. Solve: $12x^2 - 3 = 5x$

- A. $\left\{-\frac{1}{3}, \frac{3}{4}\right\}$ B. $\left\{-\frac{3}{2}, 1\right\}$
- C. $\{-3, \frac{4}{3}\}$ D. $\{\pm 13\}$
- 31. Solve: $x^2 = 5x 6$
 - A. $\{-6, 1\}$ B. $\{-2, -3\}$ C. $\{-1, 6\}$ D. $\{2, 3\}$
- 32. For which equation is the sum of the roots equal to $\frac{4}{3}$?
 - A. $3x^2 + 4x + 5 = 0$ B. $x^2 - 7x + 12 = 0$ C. $3x^2 - 4x + 5 = 0$ D. $x^2 + x + \frac{4}{3} = 0$
- 33. The roots of the equation $3x^2 7x + 4 = 0$ are:
 - A. real, rational, equal
 - B. real, rational, unequal
 - C. real, irrational, unequal
 - D. imaginary
- 34. The roots of the equation $x^2 + 2x + 2 = 0$ are:
 - A. real, rational, equal
 - B. real, irrational, unequal
 - C. real, rational, unequal
 - D. imaginary

35. The height of a baseball related to the time it is in the air can be modeled by the equation

$$h(t) = -16t^2 + v_o t + h_o$$
.

In the equation, v_o is the upward velocity (in feet per second) of the ball when t = 0, and h_o is the ball's height (in feet) when t = 0.

A certain baseball was hit at a height of $3\frac{1}{2}$ feet with an initial upward velocity of 74 feet per second. How long did the ball remain in the air?

- A. about $3\frac{2}{3}$ seconds B. about 4 seconds
- C. about $4\frac{1}{2}$ seconds D. about $5\frac{1}{6}$ seconds

36. The Orpheum Theater seats 600 people. Lately, the theater has been filled every night. The owner wants to raise the price, which is now \$5, but he knows with higher prices he will lose customers. He uses the following equation to estimate how much in dollars, *y*, he will make if he raises the price by *x* dollars.

$$y = 3000 + 350x - 50x^2$$

If the owner wants to make \$3500, what is the least amount he can raise the price of tickets?

A. \$3.00 B. \$5.00 C. \$2.00 D. \$2.50

Problem-Attic format version 4.4.202

© 2011-2013 EducAide Software Licensed for use by Lauren Plant Terms of Use at www.problem-attic.com

CCM2 Unit 2 NC Final Exam Review 12/20/2013

1. Answer: Objective:	D F.IF.08A	15. Answer: Objective:	D F.IF.08A
2. Answer: Objective:	B F.IF.08A	16. Answer: Objective:	A F.IF.08A
3. Answer: Objective:	C F.IF.08A	17. Answer: Objective:	A F.IF.08A
4. Answer: Objective:	A F.IF.08A	18. Answer: Objective:	C A.SSE.03C
5. Answer: Objective:	A F.IF.08A	19. Answer: Objective:	D A.SSE.03C
6. Answer: Objective:	D F.IF.08A	20. Answer: Objective:	A A.SSE.03C
7. Answer: Objective:	A F.IF.08A	21. Answer: Objective:	B A.SSE.03C
8. Answer: Objective:	C F.IF.08A	22. Answer: Objective:	C A.SSE.03A
9. Answer: Objective:	A F.IF.08A	23. Answer: Objective:	D A.SSE.03A
10. Answer: Objective:	B F.IF.08A	24. Answer: Objective:	A A.SSE.03A
11. Answer: Objective:	A F.IF.08A	25. Answer: Objective:	A A.SSE.03A
12. Answer: Objective:	C F.IF.08A	26. Answer: Objective:	C A.SSE.03A
13. Answer: Objective:	B F.IF.08A	27. Answer: Objective:	B A.SSE.03A
14. Answer: Objective:	D F.IF.08A		

28. Answer: Objective:	A A.REI.04B
29. Answer: Objective:	C A.REI.04B
30. Answer: Objective:	A A.REI.04B
31. Answer: Objective:	D A.REI.04B
32. Answer: Objective:	C A.REI.04B
33. Answer: Objective:	B A.REI.04B
34. Answer: Objective:	D A.REI.04B
35. Answer: Objective:	C A.REI.04B
36. Answer: Objective:	C A.REI.04B