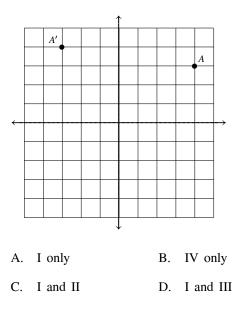

1. What is the image of point A after a rotation of  $90^{\circ}$  in the counterclockwise direction?



- 2. What is the image of (-2, 3) after a rotation of  $90^{\circ}$  clockwise?
  - A. (-3, -2) B. (3, 2)
  - C. (3, -2) D. (-2, -3)

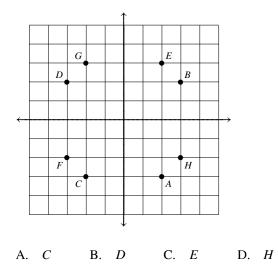

3. What is the image of (-4, 1) after a rotation of  $180^{\circ}$  clockwise?

| A. (-1, -4) | B. ( | (1,4) |
|-------------|------|-------|
|-------------|------|-------|

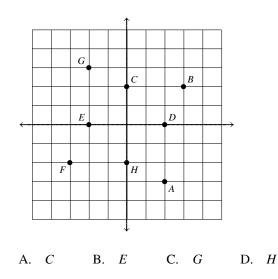
C. (4, -1) D. (1, -4)

- 4. Select the letters that would appear the same after a  $180^{\circ}$  rotation about the center.
  - I. А II. Х
  - III. O
  - IV. R
  - A. II only B. III only
  - C. II and III D. II and IV

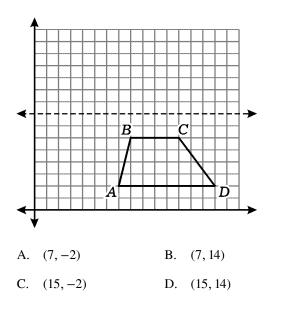
- 5. *A'* is the image of *A*. Which of the following rotations could be used to perform this transformation?
  - I.  $90^{\circ}$  counterclockwise
  - II.  $90^{\circ}$  clockwise
  - III.  $270^{\circ}$  clockwise
  - IV. 270° counterclockwise



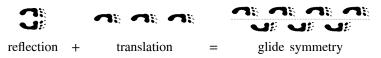

6. If a point in Quadrant II is reflected in the *y*-axis, its image will lie in Quadrant \_\_\_\_\_.


A. I B. II C. IV

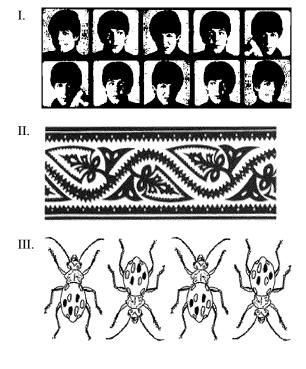
- D. on the y-axis
- 7. A point (3, 5) is reflected over the *x*-axis. What are the coordinates of the image point?
  - A. (3,0) B. (5,3)
  - C. (3, -5) D. (-3, 5)
- 8. Find P', the image of P(-3, 6), after a reflection across the line y = x.
  - A. (6, -3) B. (-3, -6)
  - C. (3, -6) D. (6, 3)
- 9. If P(3, -4) is reflected on the point (3, 0), what are the coordinates of P', the image of P?
  - A. (3,4) B. (3,-4)
  - C. (-3, -4) D. (4, 3)
- 10. What are the coordinates of the image of P(3, -4) under a reflection in the y-axis?
  - A. (-4,3) B. (-3,-4)
  - C. (3,4) D. (-3,4)


11. What is the image of point A after a rotation of  $90^{\circ}$  in the counterclockwise direction followed by a reflection in the *x*-axis?




- 12. What is the image of point A(2, -3) after these three transformations?
  - I. a translation 2 units to the left and 5 units up;
  - II. A reflection in the x-axis; and
  - III. A  $180^{\circ}$  clockwise rotation about the origin




13. If the trapezoid *ABCD* is reflected about the dashed line, what are the new coordinates for D'?

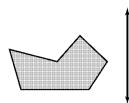


- 14. What are the coordinates of R', the image of R(-1, 8), after a reflection in the origin?
  - A. (8,1) B. (-8,-1)
  - C. (-1, -8) D. (1, -8)
- 15. Which shape, if rotated 90°, will coincide with itself? ("Coincide" means means there's an exact match between the set of points, or one shape will lay perfectly on top of the other.)
  - A. rectangle B. equilateral triangle
  - C. parallelogram D. square
- 16. A congruence transformation that includes both a reflection and a translation is called "glide symmetry". For example:

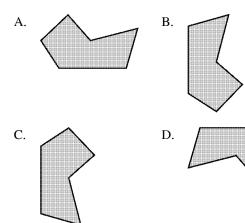


Glide symmetry is very common in nature and the visual arts. Which of the following shows glide symmetry?

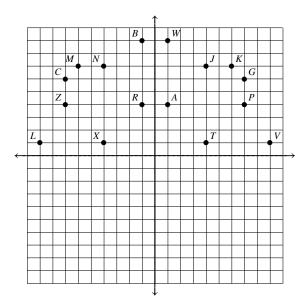



A. I only

B. II only


C. II and III only

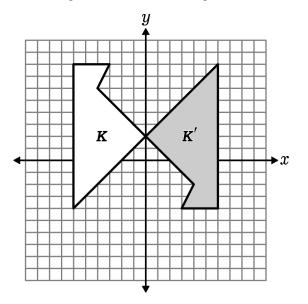
D. I, II and III


17. The following figure appears in a math workbook. Students are asked to reflect the polygon across the line, then rotate it  $90^{\circ}$  clockwise.



Which figure shows the result of the two transformations?




- 18.  $\square RPGW$ , with coordinates R(-1, 4), P(7, 4), G(7, 6) and W(1, 9), undergoes the transformations:
  - I. reflection in the y-axis; and
  - II. rotation of  $90^{\circ}$  clockwise



Which of the following is the image figure?

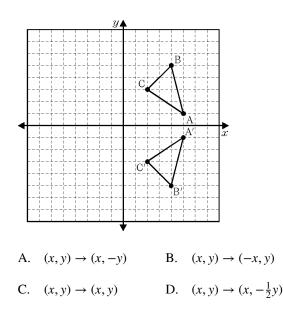
- A.  $\Box AZCB$  B.  $\Box TJKV$
- C.  $\Box XTCB$  D.  $\Box ATJB$

19. In the diagram, K and K' are congruent.



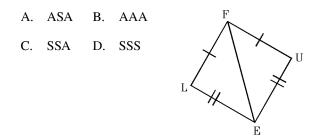
Which of the following is a way of transforming K into K'?

- A. a rotation of  $180^{\circ}$  about the origin
- B. a clockwise rotation of  $90^{\circ}$  about the point (0, 2)
- C. a reflection across the *x*-axis, then a translation down 2 units
- D. a reflection across the y-axis, then a reflection across the line y = 2

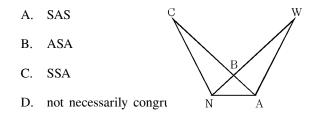

- 20. Which of the following is *not* a congruence transformation for a two-dimensional figure?
  - A. dilation B. rotation
  - C. reflection D. translation

- 21. On a coordinate system, a square which lies entirely in quadrant I has a vertex at the origin. Another square, which lies entirely in quadrant III, also has a vertex at the origin. If the squares are congruent, this could be shown with all of the following transformations *except*—
  - A. translation B. rotation
  - C. reflection D. dilation

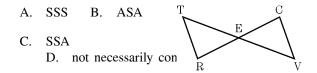
- 22. A translation maps J(1, 4) onto K(7, -3). Find the coordinates of the image of L(5, 10) under the same translation.
  - A. (11,3) B. (-1,17)
  - C. (1,-17) D. (-1,-17)


- 23.  $\triangle STV$  has vertices S(-3, -2), T(-4, 3) and V(-2, 3). If  $(x, y) \rightarrow (x + 2, y 3)$ , what are the vertices of its image?
  - A. S'(-1, -5), T'(-2, 0), V'(0, 0)
  - B. S'(-5, 1), T'(-6, 6), V'(-4, 6)
  - C. S'(-1, -4), T'(-2, 5), V'(1, 6)
  - D. S'(3, 2), T'(4, -3), V'(2, -3)

24. What is the mapping for the reflection where  $\triangle ABC$  maps to  $\triangle A'B'C'$ ?




- 25. State the congruence relation for  $\triangle XYZ$  and  $\triangle PQR$ .
  - A. ASA B. SSA C. SAS
  - D. not necessarily congruent

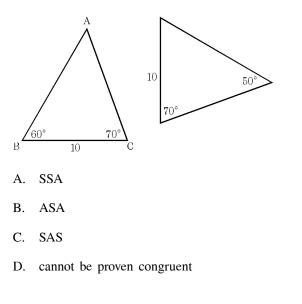

27. State the congruence relation for  $\triangle FLE$  and  $\triangle FUE$ .



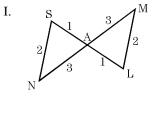
28. In the figure shown,  $m \angle CNA = m \angle WAN$  and CN = WA. What congruence statement proves  $\triangle CAN \cong \triangle WNA$ ?

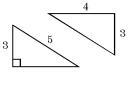


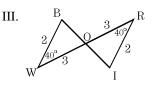
29. In the figure shown,  $m \angle T = m \angle V$  and *E* is the midpoint of  $\overline{TV}$ . What congruence statement proves  $\triangle TER \cong \triangle VEC$ ?




- 26. State the congruence relation for  $\triangle ABC$  and  $\triangle DEF$ .
  - A. SSS B. SSA  $4 \xrightarrow{A} \\ C \\ 4 \xrightarrow{B} \\ F$

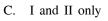

É


- C. AAA
- D. SAS


30. If the triangles can be proved congruent using only the information marked on the diagram, what is the reason?

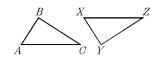


31. Which diagrams show two triangles which *must* be congruent?








II.



D. I and III only

32. The ASA (Angle, Side, Angle) relationship is a way to show that triangles are congruent. Sets of triangle parts are listed. Which set gives parts that allow triangle *ABC* to be proven congruent to triangle *XYZ* by ASA?



A. I only

- A.  $\angle A \cong \angle X; \angle B \cong \angle Y; \angle C \cong \angle Z$
- B.  $\angle A \cong \angle X; \ \overline{BC} \cong \overline{YZ}; \ \overline{AC} \cong \overline{XZ}$
- C.  $\angle A \cong \angle X; \overline{AB} \cong \overline{XY}; \overline{AC} \cong \overline{XZ}$
- D.  $\angle A \cong \angle X; \overline{AB} \cong \overline{XY}; \angle B; \cong \angle Y$

33. R S U T

Triangle *RST* is congruent to triangle *TUR*. Complete each statement.

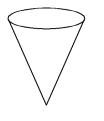
- a)  $\angle RST \cong$
- b)  $\angle STR \cong$  \_\_\_\_\_
- c)  $\overline{RU} \cong$  \_\_\_\_\_
- d) triangle  $STR \cong$  triangle \_\_\_\_\_

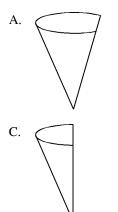
- 34. What are the coordinates of point (2, 3) after a translation to the right of 2 units and down 5 units, and then a dilation by a factor of 1.5 about (0, 0)?
  - A. (6, -3) B. (-2, -1)
  - C. (3,0) D. (0,2)

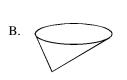
35. What are the coordinates of point (2, 3) after a translation to the left of 2 units and down 5 units, and then a dilation by a factor of 0.5 about (0, 0)?

| A. | (-6, -3) | B. $(-2, -1)$ |
|----|----------|---------------|
|    |          |               |

C. (0, -1) D. (0, 2)

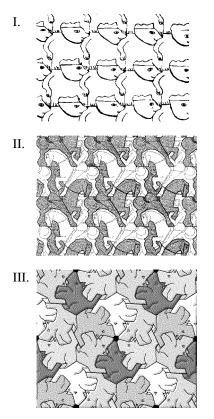

- 36.  $\triangle A'B'C'$ , with vertices A'(0, 0), B'(0, 2) and C'(1.5, 3), is the image of  $\triangle ABC$  with vertices A(0, 0), B(0, 4), and C(3, 6) under a dilation. If the origin is the center of dilation, what is the scale factor?
  - A.  $\frac{1}{4}$  B.  $\frac{1}{2}$  C. 2
  - D. undefined


37. State the coordinates of the midpoint of line segment *EF*.




- 38. Determine the coordinates of the midpoint of the line segment with endpoints R(6, -2) and S(-3, -2).
  - A. (1,2) B. (1.5,2)
  - C. (1.5, -2) D. (3, -2)

39. If you cut this object in half horizontally, what shape could result?










40. A tessellation is a repeating pattern based on congruence transformations. Here are some examples:



Which of the above examples use only translations to make the pattern?

A. I only

B. II only

C. I and II only

D. II and III only

## Problem-Attic format version 4.4.202

© 2011-2013 EducAide Software Licensed for use by Lauren Plant Terms of Use at www.problem-attic.com

## CCM2 Unit 1 NC Final Exam Review 12/20/2013

| 1.<br>Answer:<br>Objective:  | A<br>G.CO.02 | 15.<br>Answer:<br>Objective: | D<br>G.CO.03 |
|------------------------------|--------------|------------------------------|--------------|
| 2.<br>Answer:<br>Objective:  | B<br>G.CO.02 | 16.<br>Answer:<br>Objective: | D<br>G.CO.04 |
| 3.<br>Answer:<br>Objective:  | C<br>G.CO.02 | 17.<br>Answer:<br>Objective: | C<br>G.CO.05 |
| 4.<br>Answer:<br>Objective:  | C<br>G.CO.02 | 18.<br>Answer:<br>Objective: | В<br>G.CO.05 |
| 5.<br>Answer:<br>Objective:  | D<br>G.CO.02 | 19.<br>Answer:<br>Objective: | D<br>G.CO.06 |
| 6.<br>Answer:<br>Objective:  | A<br>G.CO.02 | 20.<br>Answer:<br>Objective: | A<br>G.CO.06 |
| 7.<br>Answer:<br>Objective:  | C<br>G.CO.02 | 21.<br>Answer:<br>Objective: | D<br>G.CO.06 |
| 8.<br>Answer:<br>Objective:  | A<br>G.CO.02 | 22.<br>Answer:<br>Objective: | A<br>G.CO.06 |
| 9.<br>Answer:<br>Objective:  | A<br>G.CO.02 | 23.<br>Answer:<br>Objective: | A<br>G.CO.06 |
| 10.<br>Answer:<br>Objective: | B<br>G.CO.02 | 24.<br>Answer:<br>Objective: | A<br>G.CO.06 |
| 11.<br>Answer:<br>Objective: | D<br>G.CO.02 | 25.<br>Answer:<br>Objective: | D<br>G.CO.07 |
| 12.<br>Answer:<br>Objective: | A<br>G.CO.02 | 26.<br>Answer:<br>Objective: | A<br>G.CO.07 |
| 13.<br>Answer:<br>Objective: | D<br>G.CO.02 | 27.<br>Answer:<br>Objective: | D<br>G.CO.07 |
| 14.<br>Answer:<br>Objective: | D<br>G.CO.02 | -                            |              |

| 28.<br>Answer:<br>Objective: | A<br>G.CO.07                                 |
|------------------------------|----------------------------------------------|
| 29.<br>Answer:<br>Objective: | B<br>G.CO.07                                 |
| 30.<br>Answer:<br>Objective: | B<br>G.CO.07                                 |
| 31.<br>Answer:<br>Objective: | D<br>G.CO.07                                 |
| 32.<br>Answer:<br>Objective: | D<br>G.CO.07                                 |
| 33.<br>Answer:<br>Objective: | $\angle TUR; \angle URT; ST; URT$<br>G.CO.07 |
| 34.<br>Answer:<br>Objective: | A<br>G.SRT.01A                               |
| 35.<br>Answer:<br>Objective: | C<br>G.SRT.01A                               |
| 36.<br>Answer:<br>Objective: | B<br>G.SRT.01B                               |
| 37.<br>Answer:<br>Objective: | B<br>G.GPE.06                                |
| 38.<br>Answer:<br>Objective: | C<br>G.GPE.06                                |
| 39.<br>Answer:<br>Objective: | D<br>G.GMD.04                                |
| 40.<br>Answer:<br>Objective: | A<br>G.CO.04                                 |